These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H₂O₂, and protein chaperones. Author: Rhee SG, Woo HA. Journal: Antioxid Redox Signal; 2011 Aug 01; 15(3):781-94. PubMed ID: 20919930. Abstract: Peroxiredoxins (Prxs) are a family of peroxidases that reduce peroxides, with a conserved cysteine residue (the peroxidatic Cys) serving as the site of oxidation by peroxides. Peroxides oxidize the peroxidatic Cys-SH to Cys-SOH, which then reacts with another cysteine residue (typically the resolving Cys [C(R)]) to form a disulfide that is subsequently reduced by an appropriate electron donor. On the basis of the location or absence of the C(R), Prxs are classified into 2-Cys, atypical 2-Cys, and 1-Cys Prx subfamilies. In addition to their peroxidase activity, members of the 2-Cys Prx subfamily appear to serve as peroxide sensors for other proteins and as molecular chaperones. During catalysis, the peroxidatic Cys-SOH of 2-Cys Prxs is occasionally further oxidized to Cys-SO(2)H before disulfide formation, resulting in inactivation of peroxidase activity. This hyperoxidation, which is reversed by the ATP-dependent enzyme sulfiredoxin, modulates the sensor and chaperone functions of 2-Cys Prxs. The peroxidase activity of 2-Cys Prxs is extensively regulated via tyrosine and threonine phosphorylation, which allows modulation of the local concentration of the intracellular messenger H(2)O(2). Finally, 2-Cys Prxs interact with a variety of proteins, with such interaction having been shown to modulate the function of the binding partners in a reciprocal manner.[Abstract] [Full Text] [Related] [New Search]