These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Neural mechanisms mediating circadian phase resetting by activation of 5-HT(7) receptors in the dorsal raphe: roles of GABAergic and glutamatergic neurotransmission. Author: Duncan MJ, Congleton MR. Journal: Brain Res; 2010 Dec 17; 1366():110-9. PubMed ID: 20920493. Abstract: 5-HT(7) receptors in the dorsal raphe nucleus (DRN) influence circadian rhythms, sleep, and serotonin release. Because interactions between 5-HT(7) receptors and glutamatergic and GABAergic neurons have been demonstrated previously, the current studies tested the hypothesis that GABAergic and/or glutamatergic neurons mediate phase shifts induced by activation of DRN 5-HT(7) receptors. Hamsters were fitted with guide cannulae aimed at the DRN, housed in cages with running wheels, and exposed to 14h light (L):10h dark (D). In Experiment 1, hamsters received DRN pretreatment with muscimol (87.6 pmol) or vehicle before DRN 8-OH-DPAT (6 pmol) microinjections at ZT6. After exposure to constant darkness (10 days), phase shifts were calculated and animals were re-exposed to 14L:10D. The procedure was repeated to give each animal the alternate pretreatment. In Experiment 2, hamsters received DRN pretreatment with NMDA (20 pmol) or vehicle before 8-OH-DPAT at ZT 6. Other experiments tested the effects of single DRN microinjections of muscimol, bicuculline (136 pmol), NMDA, MK-801 (10 pmol) or vehicle. Phase shifts (mean ± S.E.M., h) in muscimol/8-OH-DPAT-microinjected hamsters (1.02 ± 0.30) were not different (P=0.11) from those in vehicle/8-OH-DPAT-microinjected hamsters (1.34 ± 0.30), while those in NMDA/8-OH-DPAT-microinjected hamsters (0.67 ± 0.17) were smaller (P<0.05) than those in vehicle/8-OH-DPAT-microinjected hamsters (0.97 ± 0.10). DRN single microinjections of bicuculline, but not muscimol, NMDA, or MK-801 induced phase advances. Bicuculline also potentiated 8-OH-DPAT-induced phase advances (P<0.05). These finding suggest that the mechanism mediating DRN 5-HT(7) receptor induction of phase advances involves decreased glutamatergic neurotransmission, and furthermore, that inhibition of DRN GABAergic neurotransmission causes a phase advance.[Abstract] [Full Text] [Related] [New Search]