These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Depuration kinetics of paralytic shellfish toxins in Mytilus galloprovincialis exposed to Gymnodinium catenatum: laboratory and field experiments.
    Author: Botelho MJ, Vale C, Mota AM, S Simões Gonçalves Mde L.
    Journal: J Environ Monit; 2010 Dec; 12(12):2269-75. PubMed ID: 20931111.
    Abstract:
    The kinetics of paralytic shellfish toxins in Mytilus galloprovincialis, previously exposed to Gymnodinium catenatum, was studied under depuration laboratory conditions and over a declining bloom of the dinoflagellate in the field. The variation of the levels observed throughout the laboratory experiment was characterized by a fast depuration of B1, C1 + 2, dcSTX and dcGTX2 + 3, possibly due to the gut evacuation of unassimilated toxins or microalgae cells, or loss during digestive mechanisms. Subsequent enhancements were observed for all compounds with emphasis to dcSTX and dcGTX2 + 3, pointing to biotransformation of the assimilated toxins. Then levels decreased gradually. A first-order depuration kinetic model fitted well to the decrease of B1, C1 + 2 and dcGTX2 + 3 concentrations, but not for dcSTX. Mussels exposed to a declining bloom of Gymnodinium catenatum exhibited a loss of toxins following the same pattern. Despite the low abundance of this dinoflagellate, a similar kinetic model was applied to the field data. The depuration rate of dcGTX2 + 3 in the field experiment (0.153 ± 0.03 day(-1)) significantly exceeded the value calculated in the laboratory (0.053 ± 0.01 day(-1)), while smaller differences were obtained for B1 (0.071 ± 0.02 and 0.048 ± 0.01 day(-1)) and similar values for C1 + 2 (0.082 ± 0.03 and 0.080 ± 0.03 day(-1)). The slower depuration rate of dcGTX2 + 3 in the heavily contaminated mussels at the laboratory may be related to a more effective contribution of C1 + 2 biotransformation.
    [Abstract] [Full Text] [Related] [New Search]