These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Involvement of Wnt/beta-catenin signaling in tripchlorolide protecting against oligomeric beta-amyloid-(1-42)-induced neuronal apoptosis]. Author: Wu M, Zhu YG, Pan XD, Lin N, Zhang J, Chen XC. Journal: Yao Xue Xue Bao; 2010 Jul; 45(7):853-9. PubMed ID: 20931782. Abstract: This study is to explore whether the Wnt/beta-catenin signaling pathway is involved in the process of tripchlorolide (T4) protecting against oligomeric Abeta(1-42)-induced neuronal apoptosis. Primary cultured cortical neurons were used for the experiments on day 6 or 7. The oligomeric Abeta(1-42) (5 micromol x L(-1) for 24 h) was applied to induce neuronal apoptosis. Prior to treatment with Abeta(1-42) for 24 h, the cultured neurons were pre-incubated with T4 (2.5, 10, and 40 nmol x L(-1)), Wnt3a (Wnt signaling agonists) and Dkk1 (inhibitors) for indicated time. Then the cell viability, neuronal apoptosis, and protein levels of Wnt, glycogen synthase kinase 3beta (GSK3beta), beta-catenin and phospho-beta-catenin were measured by MTT assay, TUNEL staining and Western blotting, respectively. The result demonstrated that oligomeric Abeta(1-42) induced apoptotic neuronal cell death in a time- and dose-dependent manner. Pretreatment with T4 significantly increased the neuronal cell survival and attenuated neuronal apoptosis. Moreover, oligomeric Abeta(1-42)-induced phosphorylation of beta-catenin and GSK3beta was markedly inhibited by T4. Additionally, T4 stabilized cytoplasmic beta-catenin. These results indicate that tripchlorolide protects against the neurotoxicity of Abeta by regulating Wnt/beta-catenin signaling pathway. This may provide insight into the clinical application of tripchlorolide to Alzheimer's disease.[Abstract] [Full Text] [Related] [New Search]