These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of renal gluconeogenesis contributes to hypoglycaemic action of NADPH oxidase inhibitor, apocynin.
    Author: Winiarska K, Grabowski M, Rogacki MK.
    Journal: Chem Biol Interact; 2011 Jan 15; 189(1-2):119-26. PubMed ID: 20934416.
    Abstract:
    NADPH oxidase, catalysing superoxide radical (O₂(.-)) formation, is considered as a main source of reactive oxygen species in kidneys and its increased activity is supposed to be involved in the development of diabetic nephropathy. The aim of this study was to investigate the effect of NADPH oxidase inhibitor, apocynin, on renal gluconeogenesis, which is an important source of endogenous glucose under diabetic conditions. The following observations were made during the experiments performed on isolated renal proximal tubules of control and alloxan diabetic rabbits: (1) apocynin (200 μM) inhibited the rate of glucose synthesis by 45-80%, depending on the substrate applied; (2) the rate of glucose production was also significantly diminished in the presence of TEMPOL (5mM), a superoxide radical scavenger, suggesting that the decrease in O₂(.-) formation might be involved in apocynin-evoked gluconeogenesis inhibition; (3) the activities of phosphoenolpyruvate carboxykinase (PEPCK) and/or aldolase were lowered in the presence of either apocynin or TEMPOL, as concluded from the intracellular levels of gluconeogenic intermediates. The data from in vivo experiments indicated that apocynin treatment (2g/l of drinking water): (1) significantly (by about 30%) attenuated serum glucose concentration in diabetic rabbits and did not affect glycaemia in control animals; (2) normalized diabetes-stimulated rate of glucose synthesis and slightly inhibited gluconeogenesis in control rabbits; (3) normalized diabetes-increased activity of mitochondrial PEPCK and lowered cytosolic PEPCK activity by about 20% below the value for untreated control animals; (4) slightly decreased the activity of mitochondrial PEPCK and did not change the activity of cytosolic one in control rabbits. Thus, it is concluded that: (1) the inhibition of NADPH oxidase might contribute to lowered rate of renal gluconeogenesis, probably due to decreasing PEPCK activity; (2) inhibition of renal gluconeogenesis is involved in apocynin hypoglycaemic action in vivo; (3) apocynin might be beneficial for diabetes treatment.
    [Abstract] [Full Text] [Related] [New Search]