These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Activation of the melanocortin-4 receptor causes enhanced excitation in presympathetic paraventricular neurons in obese Zucker rats. Author: Ye ZY, Li DP. Journal: Regul Pept; 2011 Jan 17; 166(1-3):112-20. PubMed ID: 20937332. Abstract: Sympathetic nerve activity is increased in obesity-related hypertension. However, the central mechanisms involved in the increased sympathetic outflow remain unclear. The hypothalamic melanocortin system is important for regulating energy balance and sympathetic outflow. To understand the mechanisms by which the melanocortin systems regulates sympathetic outflow, we investigated the role of melanocortin 4 receptors (MC4R) in regulating presympathetic paraventricular nucleus (PVN) neurons. We performed whole-cell patch-clamp recordings on retrogradely labeled PVN neurons projecting to the rostral ventrolateral medulla in brain slices from obese zucker rats (OZRs) and lean zucker rats (LZRs). The MC4R agonists melanotan II (MTII) and α-melanocyte-stimulating hormone (α-MSH) increased the firing activity and depolarized the labeled PVN neurons from both LZRs and OZRs in a concentration-dependent manner. MTII produced significant greater increase in the firing activity in OZRs than in LZRs. Blocking MC4R with the specific antagonist SHU9119 had no effect on the basal firing rate but abolished the MTII-induced increase in the firing rate in both OZRs and LZRs. Furthermore, intracellular dialysis of guanosine 5'-O-(2-thodiphosphate), but not bath application of kynurenic acid and bicuculline, eliminated the MTII-induced increase in firing activity. In addition, MTII had no effect on the frequency and amplitude of glutamatergic excitatory postsynaptic currents and GABAergic inhibitory postsynaptic currents in labeled PVN neurons. Collectively, our findings suggest that MC4R contributes to the elevated excitability of PVN presympathetic neurons, which may be involved in obesity-related hypertension.[Abstract] [Full Text] [Related] [New Search]