These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Anti-inflammatory effects of cordycepin via suppression of inflammatory mediators in BV2 microglial cells.
    Author: Jeong JW, Jin CY, Kim GY, Lee JD, Park C, Kim GD, Kim WJ, Jung WK, Seo SK, Choi IW, Choi YH.
    Journal: Int Immunopharmacol; 2010 Dec; 10(12):1580-6. PubMed ID: 20937401.
    Abstract:
    Cordyceps militaris, a traditional medicinal mushroom, produces the bioactive compound cordycepin (3'-deoxyadenosine). Although cordycepin has been shown to have pharmacological, immunological stimulating, anti-cancer, and anti-inflammatory activities, its activities and cellular mechanisms during microglial activation have yet to be elucidated. Thus, we evaluated the anti-inflammatory effect of cordycepin on the production of inflammatory mediators in lipopolysaccharide (LPS)-stimulated murine BV2 microglia. We also investigated the effects of cordycepin on LPS-induced nuclear factor-kappaB (NF-κB) activation and on phosphorylation of mitogen-activated protein kinases (MAPKs). After LPS stimulation, nitric oxide (NO), prostaglandin E₂ (PGE₂), and pro-inflammatory cytokine production was detected in BV2 microglia. However, we found that cordycepin significantly inhibited the excessive production of NO, PGE₂, and pro-inflammatory cytokines in a concentration-dependent manner without causing cytotoxicity. In addition, cordycepin suppressed NF-κB translocation by blocking IkappaB-α (IκB-α) degradation and inhibited the phosphorylation of Akt, ERK-1/2, JNK, and p38 kinase. Our results indicate that the inhibitory effect of cordycepin on LPS-stimulated inflammatory mediator production in BV2 microglia is associated with the suppression of the NF-κB, Akt, and MAPK signaling pathways. Therefore, cordycepin may be useful in treating neurodegenerative diseases by inhibiting inflammatory mediator production in activated microglia.
    [Abstract] [Full Text] [Related] [New Search]