These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Optimal beam quality selection based on contrast-to-noise ratio and mean glandular dose in digital mammography. Author: Aminah M, Ng KH, Abdullah BJ, Jamal N. Journal: Australas Phys Eng Sci Med; 2010 Dec; 33(4):329-34. PubMed ID: 20938762. Abstract: The performance of a digital mammography system (Siemens Mammomat Novation) using different target/filter combinations and tube voltage has been assessed. The objective of this study is to optimize beam quality selection based on contrast-to-noise ratio (CNR) and mean glandular dose (MGD). Three composition of breast were studied with composition of glandular/adipose of 30/70, 50/50, and 70/30. CNR was measured using 2, 4 and 6 cm-thick simulated breast phantoms with an aluminium sheet of 0.1 mm thickness placed on top of the phantom. Three target/filter combinations, namely molybdenum/molybdenum (Mo/Mo), molybdenum/rhodium (Mo/Rh) and tungsten/rhodium (W/Rh) with various tube voltage and mAs were tested. MGD was measured for each exposure. For 50/50 breast composition, Mo/Rh combination with tube voltage 26 kVp is optimal for 2 cm-thick breast. W/Rh combination with tube voltage 27 and 28 kVp are optimal for 4 and 6 cm-thick breast, respectively. For both 30/70 and 70/30 breast composition, W/Rh combination is optimal with tube voltage 25, 26 and 27 kVp, respectively. From our study it was shown that there are potential of dose reduction up to 11% for a set CNR of 3.0 by using beam quality other than that are determined by AEC selection. Under the constraint of lowest MGD, for a particular breast composition, calcification detection is optimized by using a softer X-ray beam for thin breast and harder X-ray beam for thick breast. These experimental results also indicate that for breast with high fibroglandular tissues (70/30), the use of higher beam quality does not always increase calcification detection due to additional structured noise caused by the fibroglandular tissues itself.[Abstract] [Full Text] [Related] [New Search]