These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Scopoletin from the flower buds of Magnolia fargesii inhibits protein glycation, aldose reductase, and cataractogenesis ex vivo.
    Author: Lee J, Kim NH, Nam JW, Lee YM, Jang DS, Kim YS, Nam SH, Seo EK, Yang MS, Kim JS.
    Journal: Arch Pharm Res; 2010 Sep; 33(9):1317-23. PubMed ID: 20945129.
    Abstract:
    Five compounds previously known structures, scopoletin (1), northalifoline (2), stigmast-4-en-3-one (3), tiliroside (4), and oplopanone (5) were obtained from the flower buds of Magnolia fargesii using chromatographic separation methods. The structures of 1-5 were identified by the interpretation of their spectroscopic data including 1D- and 2D-NMR as well as by comparison with reported values. Three compounds 1-3 were found from M. fargesii for the first time in this study. All the isolates (1-5) were subjected to in vitro bioassays to evaluate the inhibitory activity on advanced glycation end products formation and rat lens aldose reductase (RLAR). Compound 1 showed a remarkable inhibitory activity on advanced glycation end products formation with IC(50) value of 2.93 μM (aminoguanidine: 961 μM), and showed a significant RLAR inhibitory activity with IC(50) value of 22.5 μM (3.3-tetramethyleneglutaric acid: 28.7 μM). Compound 4 exhibited potent inhibitory activity against RLAR (IC(50) = 14.9 μM). In the further experiment ex vivo, cataractogenesis of rat lenses induced with xylose was significantly inhibited by compound 1 treatment.
    [Abstract] [Full Text] [Related] [New Search]