These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electrogenerated chemiluminescence detection of adenosine based on triplex DNA biosensor.
    Author: Ye S, Li H, Cao W.
    Journal: Biosens Bioelectron; 2011 Jan 15; 26(5):2215-20. PubMed ID: 20947334.
    Abstract:
    A novel electrogenerated chemiluminescence (ECL) biosensor based on the construction of triplex DNA for the detection of adenosine was designed. The ECL biosensor employs an aptamer as a molecular recognition element, and quenches ECL of tris(2,2'-bipyridine) ruthenium (Ru(bpy)(3)(2+)) by ferrocenemonocarboxylic acid (FcA). Through self-assembly technology, the ECL probe of thiolated hairpin adenosine aptamer tagged was self-assembled onto the surface of a gold electrode with an ECL signal producer Ru(bpy)(3)(2+) derivative (Ru-DNA-1). The adenosine aptamer, including a section of triplex characteristic chain, formatted triplex DNA with two other DNAs (DNA-2, Fc-DNA-3) in the presence of triplex DNA binder coralyne chloride (CORA). Fc-DNA-3 was tagged with an ECL quencher ferrocenemonocarboxylic acid (FcA), a quenching probe. In the presence of adenosine, the aptamer sequence (Ru-DNA-1) prefers to form the aptamer-adenosine complex with hairpin configuration and the switch of the DNA-1 occurs in conjunction with the generation of a strong ECL signal owing to the dissociation of a quenching probe. Meanwhile, a control experiment was performed; the ECL-duplex biosensor was designed to detect adenosine. The detection limits were 2.7×10(-10) mol L(-1) and 2.3×10(-9) mol L(-1) for the ECL-triplex DNA biosensor and ECL-duplex DNA biosensor, respectively, which demonstrated that the ECL-triplex DNA biosensor improved the sensitivity and specificity greatly.
    [Abstract] [Full Text] [Related] [New Search]