These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Land use greenhouse gas emissions from conventional oil production and oil sands.
    Author: Yeh S, Jordaan SM, Brandt AR, Turetsky MR, Spatari S, Keith DW.
    Journal: Environ Sci Technol; 2010 Nov 15; 44(22):8766-72. PubMed ID: 20949948.
    Abstract:
    Debates surrounding the greenhouse gas (GHG) emissions from land use of biofuels production have created a need to quantify the relative land use GHG intensity of fossil fuels. When contrasting land use GHG intensity of fossil fuel and biofuel production, it is the energy yield that greatly distinguishes the two. Although emissions released from land disturbed by fossil fuels can be comparable or higher than biofuels, the energy yield of oil production is typically 2-3 orders of magnitude higher, (0.33-2.6, 0.61-1.2, and 2.2 5.1 PJ/ha) for conventional oil production, oil sands surface mining, and in situ production, respectively). We found that land use contributes small portions of GHGs to life cycle emissions of California crude and in situ oil sands production ( <0.4% or < 0.4 gCO₂e/MJ crude refinery feedstock) and small to modest portions for Alberta conventional oil (0.1-4% or 0.1-3.4 gCO₂e/MJ) and surface mining of oil sands (0.9-11% or 0.8-10.2 gCO₂e/MJ).Our estimates are based on assumptions aggregated over large spatial and temporal scales and assuming 100% reclamation. Values on finer spatial and temporal scales that are relevant to policy targets need to account for site-specific information, the baseline natural and anthropogenic disturbance.
    [Abstract] [Full Text] [Related] [New Search]