These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Intracellular protein glycosylation modulates insulin mediated lifespan in C.elegans.
    Author: Rahman MM, Stuchlick O, El-Karim EG, Stuart R, Kipreos ET, Wells L.
    Journal: Aging (Albany NY); 2010 Oct; 2(10):678-90. PubMed ID: 20952811.
    Abstract:
    O-linked-β-N-acetylglucosamine (O-GlcNAc) modification is a regulatory, nuclear and cytoplasmic post-translational glycosylation of proteins associated with age-related diseases such as Alzheimer's, Parkinson's, and type II diabetes. Global elevation of O-GlcNAc levels on intracellular proteins can induce insulin resistance, the hallmark of type II diabetes, in mammalian systems. InC. elegans, attenuation of the insulin-like signal transduction pathway increases adult lifespan of the nematode. We demonstrate that the O-GlcNAc cycling enzymes OGT and OGA, which add and remove O-GlcNAc respectively, modulate lifespan in C. elegans. Median adult lifespan is increased in an oga-1 deletion strain while median adult life span is decreased upon ogt-1 deletion. The O-GlcNAc-mediated effect on nematode lifespan is dependent on the FoxO transcription factor DAF-16. DAF-16 is a key factor in the insulin-like signal transduction pathway to regulate reproductive development, lifespan, stress tolerance, and dauer formation in C. elegans. Our data indicates that O-GlcNAc cycling selectively influences only a subset of DAF-16 mediated phenotypes, including lifespan and oxidative stress resistance. We performed an affinity purification of O-GlcNAc-modified proteins and observed that a high percentage of these proteins are regulated by insulin signaling and/or impact insulin pathway functional outcomes, suggesting that the O-GlcNAc modification may control downstream effectors to modulate insulin pathway mediated cellular processes.
    [Abstract] [Full Text] [Related] [New Search]