These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A lentiviral strategy for highly efficient retrograde gene transfer by pseudotyping with fusion envelope glycoprotein. Author: Kato S, Kobayashi K, Inoue K, Kuramochi M, Okada T, Yaginuma H, Morimoto K, Shimada T, Takada M, Kobayashi K. Journal: Hum Gene Ther; 2011 Feb; 22(2):197-206. PubMed ID: 20954846. Abstract: The lentiviral vector system based on human immunodeficiency virus type 1 (HIV-1) is used extensively in gene therapy trials of neurological and neurodegenerative diseases. Retrograde axonal transport of viral vectors offers a great advantage to the delivery of genes into neuronal cell bodies that are situated in regions distant from the injection site. Pseudotyping of HIV-1-based vectors with selective variants of rabies virus glycoprotein (RV-G) increases gene transfer via retrograde transport into the central nervous system. Because large-scale application for gene therapy trials requires high titer stocks of the vector, pseudotyping of a lentiviral vector that produces more efficient retrograde transport is needed. In the present study, we developed a novel vector system for highly efficient retrograde gene transfer by pseudotyping an HIV-1 vector with a fusion envelope glycoprotein (termed FuG-B) in which the cytoplasmic domain of RV-G was substituted by the corresponding part of vesicular stomatitis virus glycoprotein. The FuG-B pseudotype shifted the transducing property of the lentiviral vector and enhanced the retrograde transport-mediated gene transfer into different brain regions innervating the striatum with greater efficiency than that of the RV-G pseudotype in mice. In addition, injection of the FuG-B-pseudotyped vector into monkey striatum (caudate and putamen) allowed for highly efficient gene delivery into the nigrostriatal dopamine system, which is a major target for gene therapy of Parkinson's disease. Our strategy provides a powerful tool for the treatment of certain neurological and neurodegenerative diseases by promoting retrograde gene delivery via a lentiviral vector.[Abstract] [Full Text] [Related] [New Search]