These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: BchJ and BchM interact in a 1 : 1 ratio with the magnesium chelatase BchH subunit of Rhodobacter capsulatus. Author: Sawicki A, Willows RD. Journal: FEBS J; 2010 Nov; 277(22):4709-21. PubMed ID: 20955518. Abstract: Substrate channeling between the enzymatic steps in the (bacterio)chlorophyll biosynthetic pathway catalyzed by magnesium chelatase (BchI/ChlI, BchD/ChlD and BchH/ChlH subunits) and S-adenosyl-L-methionine:magnesium-protoporphyrin IX O-methyltransferase (BchM/ChlM) has been suggested. This involves delivery of magnesium-protoporphyrin IX from the BchH/ChlH subunit of magnesium chelatase to BchM/ChlM. Stimulation of BchM/ChlM activity by BchH/ChlH has previously been shown, and physical interaction of the two proteins has been demonstrated. In plants and cyanobacteria, there is an added layer of complexity, as Gun4 serves as a porphyrin (protoporphyrin IX and magnesium-protoporphyrin IX) carrier, but this protein does not exist in anoxygenic photosynthetic bacteria. BchJ may play a similar role to Gun4 in Rhodobacter, as it has no currently assigned function in the established pathway. Purified recombinant Rhodobacter capsulatus BchJ and BchM were found to cause a shift in the equilibrium amount of Mg-protoporphyrin IX formed in a magnesium chelatase assay. Analysis of this shift revealed that it was always in a 1 : 1 ratio with either of these proteins and the BchH subunit of the magnesium chelatase. The establishment of the new equilibrium was faster with BchM than with BchJ in a coupled magnesium chelatase assay. BchJ bound magnesium-protoporphyrin IX or formed a ternary complex with BchH and magnesium-protoporphyrin IX. These results suggest that BchJ may play a role as a general magnesium porphyrin carrier, similar to one of the roles of GUN4 in oxygenic organisms.[Abstract] [Full Text] [Related] [New Search]