These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: High-throughput single-cell quantification using simple microwell-based cell docking and programmable time-course live-cell imaging.
    Author: Park MC, Hur JY, Cho HS, Park SH, Suh KY.
    Journal: Lab Chip; 2011 Jan 07; 11(1):79-86. PubMed ID: 20957290.
    Abstract:
    Extracting single-cell information during cellular responses to external signals in a high-throughput manner is an essential step for quantitative single-cell analyses. Here, we have developed a simple yet robust microfluidic platform for measuring time-course single-cell response on a large scale. Our method combines a simple microwell-based cell docking process inside a patterned microfluidic channel, with programmable time-course live-cell imaging and software-aided fluorescent image processing. The budding yeast, Saccharomyces cerevisiae (S. cerevisiae), cells were individually captured in microwells by multiple sweeping processes, in which a cell-containing solution plug was actively migrating back and forth several times by a finger-pressure induced receding meniscus. To optimize cell docking efficiency while minimizing unnecessary flooding in subsequent steps, circular microwells of various channel dimensions (4-24 µm diameter, 8 µm depth) along with different densities of cell solution (1.5-6.0 × 10(9) cells per mL) were tested. It was found that the microwells of 8 µm diameter and 8 µm depth allowed for an optimal docking efficiency (>90%) without notable flooding issues. For quantitative single-cell analysis, time-course (time interval 15 minute, for 2 hours) fluorescent images of the cells stimulated by mating pheromone were captured using computerized fluorescence microscope and the captured images were processed using a commercially available image processing software. Here, real-time cellular responses of the mating MAPK pathway were monitored at various concentrations (1 nM-100 µM) of mating pheromone at single-cell resolution, revealing that individual cells in the population showed non-uniform signaling response kinetics.
    [Abstract] [Full Text] [Related] [New Search]