These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Na+,K+-ATPase activity and subunit protein expression: ontogeny and effects of exogenous and endogenous steroids on the cerebral cortex and renal cortex of sheep.
    Author: Kim CR, Sadowska GB, Newton SA, Merino M, Petersson KH, Padbury JF, Stonestreet BS.
    Journal: Reprod Sci; 2011 Apr; 18(4):359-73. PubMed ID: 20959645.
    Abstract:
    We examined the effects of development, exogenous, and endogenous glucocorticoids on Na(+),K(+)-ATPase activity and subunit protein expression in ovine cerebral cortices and renal cortices. Ewes at 60%, 80%, and 90% gestation, newborns, and adults received 4 dexamethasone or placebo injections. Cerebral cortex Na(+),K(+)-ATPase activity was higher (P < .05) in placebo-treated newborns than fetuses of placebo-treated ewes and adults, α(1)-expression was higher at 90% gestation than the other ages; α(2)-expression was higher in newborns than fetuses; α(3)-expression was higher in newborns than 60% gestation; β(1)-expression was higher in newborns than the other ages, and β(2)-expression higher at 60% than 80% and 90% gestation, and in adults. Renal cortex Na(+),K(+)-ATPase activity was higher in placebo-treated adults and newborns than fetuses. Cerebral cortex Na(+),K(+)-ATPase activity was higher in dexamethasone- than placebo-treated adults, and α(1)-expression higher in fetuses of dexamethasone- than placebo-treated ewes at 60% and 80% gestation. Renal cortex Na(+),K(+)-ATPase activity and α(1)-expression were higher in fetuses of dexamethasone- than placebo-treated ewes at each gestational age, and β(1)-expression was higher in fetuses of dexamethasone- than placebo-treated ewes at 90% gestation and in dexamethasone- than placebo-treated adults. Cerebral cortex Na(+),K(+)-ATPase activity, α(1)-expression, β(1)-expression, and renal cortex α(1)-expression correlated directly with increases in fetal cortisol. In conclusion, Na(+),K(+)-ATPase activity and subunit expression exhibit specific developmental patterns in brain and kidney; exogenous glucocorticoids regulate activity and subunit expression in brain and kidney at some ages; endogenous increases in fetal cortisol regulate cerebral Na(+),K(+)-ATPase, but exogenous glucocorticoids have a greater effect on renal than cerebral Na(+),K(+)-ATPase.
    [Abstract] [Full Text] [Related] [New Search]