These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis and coordination chemistry of two N2-donor chelating di(indazolyl)methane ligands: structural characterization and comparison of their metal chelation aptitudes.
    Author: Pettinari C, Marinelli A, Marchetti F, Ngoune J, Galindo A, Álvarez E, Gómez M.
    Journal: Inorg Chem; 2010 Nov 15; 49(22):10543-56. PubMed ID: 20964418.
    Abstract:
    The N(2)-donor bidentate ligands di(1H-indazol-1-yl)methane (L(1)) and di(2H-indazol-2-yl)methane (L(2)) (L in general) have been synthesized, and their coordination behavior toward Zn(II), Cd(II), and Hg(II) salts has been studied. Reaction of L(1) and L(2) with ZnX(2) (X = Cl, Br, or I) yields [ZnX(2)L] species (1-6), that, in the solid state, show a tetrahedral structure with dihapto ligand coordination via the pyrazolyl arms. The reaction of L(1) and L(2) with Zn(NO(3))(2)·6H(2)O is strongly dependent on the reaction conditions and on the ligand employed. Reaction of L(1) with equimolar quantities of Zn(NO(3))(2)·6H(2)O yields the neutral six-coordinate species [Zn(NO(3))(2)(L(1))], 7. On the other hand the use of L(1) excess gives the 2:1 adduct [Zn(NO(3))(2)(L(1))(2)], 8 where both nitrates act as a unidentate coordinating ligand. Analogous stoichiometry is found in the compound obtained from the reaction of L(2) with Zn(NO(3))(2)·6H(2)O which gives the ionic [Zn(NO(3))(L(2))(2)](NO(3)), 10. Complete displacement of both nitrates from the zinc coordination sphere is observed when the reaction between L(1) excess and the zinc salt was carried out in hydrothermal conditions. The metal ion type is also determining structure and stoichiometry: the reaction of L(2) with CdCl(2) gave the 2:1 adduct [CdCl(2)(L(2))(2)] 11 where both chlorides complete the coordination sphere of the six-coordinate cadmium center; on the other hand from the reaction of L(1) with CdBr(2) the polynuclear [CdBr(2)(L(1))](n) 12 is obtained, the Br(-) anion acting as bridging ligands in a six-coordinate cadmium coordination environment. The reaction of L(1) and L(2) with HgX(2) (X = Cl, I, SCN) is also dependent on the reaction conditions and the nature of X, two different types of adducts being formed [HgX(L)] (14: L = L(1), 16, 17: L = L(1) or L(2), X = I, 19: L = L(2), X = SCN) and [HgX(L)(2)] (15: L = L(2), X = Cl, 18: L = L(1), X = SCN). The X-ray diffraction analyses of compounds 1, 2, 4, 5, 7, 8, 10-12, 14, 15, and 19 are also reported. The variations of the coordination geometry parameters in the complexes are compared and discussed.
    [Abstract] [Full Text] [Related] [New Search]