These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Theoretical consideration of osmotic pressure in aqueous protein/salt systems based on extended hard core Lennard-Jones potential.
    Author: Pai SJ, Bae YC.
    Journal: J Chem Phys; 2010 Oct 21; 133(15):154104. PubMed ID: 20969367.
    Abstract:
    A simple and analytical pair potential function was developed to represent the osmotic pressures in aqueous protein/salt systems under various conditions. Based on a hard core Lennard-Jones (HCLJ) potential model, the new potential function considers various interactions by extending the attractive Lennard-Jones potential. A temperature-dependent coefficient term was introduced to take into account the specific properties of given materials. Comparison of the new potential function with the HCLJ model in hydrocarbon and water systems showed that consideration of the temperature dependence in the potential function was effective, especially for strong polar systems such as water. To predict the osmotic pressures of aqueous lysozyme/(NH(4))(2)SO(4) solutions of various ionic strength and pH, the energy parameters of lysozyme were correlated with the experimental cloud point temperature. The proposed model agreed fairly well with the experimental osmotic pressure data with only previously obtained parameters.
    [Abstract] [Full Text] [Related] [New Search]