These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Post-anoxic denitrification driven by PHA and glycogen within enhanced biological phosphorus removal. Author: Coats ER, Mockos A, Loge FJ. Journal: Bioresour Technol; 2011 Jan; 102(2):1019-27. PubMed ID: 20970328. Abstract: The objective of this research was to interrogate and develop a better understanding for a process to achieve post-anoxic denitrification without exogenous carbon augmentation within enhanced biological phosphorus removal (EBPR). Sequencing batch reactors fed real wastewater and seeded with mixed microbial consortia were operated under variable anaerobic-aerobic-anoxic and organic carbon loading conditions. The process consistently achieved phosphorus and nitrogen removal, while the observed specific denitrification rates were markedly higher than expected for post-anoxic systems operated without exogenous organic carbon addition. Investigations revealed that post-anoxic denitrification was predominantly driven by glycogen, an intracellular carbon storage polymer associated with EBPR; moreover, glycogen reserves can be significantly depleted post-anoxically without compromising EBPR. Success of the proposed process is predicated on providing sufficient organic acids in the influent wastewater, such that residual nitrate carried over from the post-anoxic period is reduced and polyhydroxyalkanoate (PHA) synthesis occurs.[Abstract] [Full Text] [Related] [New Search]