These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Detection of vibrational bending mode ν8 and overtone bands of the propargyl radical, HCCCH2 X̃ 2B1. Author: Zhang X, Sander SP, Chaimowitz A, Ellison GB, Stanton JF. Journal: J Phys Chem A; 2010 Nov 18; 114(45):12021-7. PubMed ID: 20973539. Abstract: Infrared (IR) absorption spectra of matrix-isolated HCCCH(2) have been measured. Propargyl radicals were generated in a supersonic pyrolysis nozzle, using a method similar to that described in a previous study (Jochnowitz, E. B.; Zhang, X.; Nimlos, M. R.; Varner, M. E.; Stanton, J. F.; Ellison, G. B. J. Phys. Chem. A 2005, 109, 3812-3821). Besides the nine vibrational modes observed in the previous study, this investigation detected the HCCCH(2) X̃ (2)B(1) out-of-plane bending mode (ν(8)) at 378.0 (±1.9) cm(-1) in a cryogenic argon matrix. This is the first experimental observation of ν(8) for the propargyl radical. In addition, seven overtone and combination bands have also been detected and assigned. Ab initio coupled-cluster anharmonic force field calculations were used to guide the analysis. Furthermore, ν(12), the HCCCH(2) in-plane bending mode, has been assigned to 333 (±10) cm(-1) based on the detection of its overtone (2ν(12), 667.7 ± 1.0 cm(-1)) and a possible combination band (ν(10) + ν(12), 1339.0 ± 0.8 cm(-1)). This is the first experimental estimation of ν(12) for the propargyl radical.[Abstract] [Full Text] [Related] [New Search]