These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: PPARγ-independent thiazolidinedione-mediated inhibition of NUR77 expression in vascular endothelial cells. Author: Hu Y, Liu HB, Simpson RW, Dear AE. Journal: J Endocrinol; 2011 Jan; 208(1):R1-7. PubMed ID: 20978184. Abstract: The thiazolidinediones (TZDs) have been reported to reduce atherogenesis in preclinical models and atherosclerosis in clinical trials in pre-diabetic and diabetic patients. Although peroxisome proliferator-activated receptor γ (PPARγ)-mediated effects on gene expression have been thought responsible for this effect, a complete understanding of the molecular mechanisms responsible remains to be fully elucidated. We have previously reported PPARγ-independent modulation of NUR77 (also known as Nr4a1), an orphan nuclear receptor deemed important in the atherogenic process, in association with TZD-mediated inhibition of tumour necrosis factor α (TNFα) induction of plasminogen activator inhibitor type 1 expression. Here, we report NUR77 mRNA expression is increased in human vascular endothelial cells (HUVEC) stimulated by TNFα and that this effect is inhibited by a TZD in a PPARγ-independent manner. TZD treatment of HUVEC also inhibited the stimulatory effects of TNFα on NUR77 promoter activity, again in a PPARγ-independent manner, confirming the transcriptional nature of this effect. TZD treatment also attenuated the binding of nuclear proteins to the nuclear factor kappa B (NF-κB)-binding site of the NUR77 promoter in HUVEC in a PPARγ-independent manner. In addition, TZD treatment also inhibited TNFα-mediated induction of NF-κB1 mRNA expression. Our results suggest a potential PPARγ-independent molecular mechanism for the anti-atherogenic effects of TZDs involving NF-κB-mediated transcriptional inhibition of cytokine-mediated induction of the orphan nuclear receptor NUR77 in HUVEC.[Abstract] [Full Text] [Related] [New Search]