These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protective effect of Ilex latifolia, a major component of "kudingcha", against transient focal ischemia-induced neuronal damage in rats. Author: Kim JY, Jeong HY, Lee HK, Yoo JK, Bae K, Seong YH. Journal: J Ethnopharmacol; 2011 Jan 27; 133(2):558-64. PubMed ID: 21029769. Abstract: AIMS OF THE STUDY: Ilex latifolia (Aquifoliaceae), a primary component of "kudingcha", has been used in Chinese folk medicine to treat various kinds of diseases including headaches, inflammatory diseases, and cardiac ischemic injury. The present study investigated the protective effect of the ethanol extract of Ilex latifolia against transient, focal, ischemia-induced neuronal damage. MATERIALS AND METHODS: Transient focal ischemia was induced by 2 h middle cerebral artery occlusion followed by 24 h reperfusion (MCAO/reperfusion) in rats. After MCAO/reperfusion, brain infarction and neuronal death were measured by triphenyltetrazolium chloride and hematoxylin and eosin staining, respectively. Glutathione concentration and lipid peroxidation rate were measured. The expression levels of phosphorylated mitogen activated proteins kinases (MAPKs), cyclooxygenase 2 (COX-2), and anti-apoptotic and pro-apoptotic proteins were detected by Western blot. RESULTS: Ilex latifolia (50-200 mg/kg) significantly reduced MCAO/reperfusion-induced infarction and edema formation, neurological deficits, and brain cell death. Depletion of glutathione level and lipid peroxidation induced by MCAO/reperfusion were inhibited by administration of Ilex latifolia. The increase of phosphorylated MAPKs, COX-2, and proapoptotic proteins and the decrease of antiapoptotic protein in MCAO/reperfusion rats were significantly inhibited by treatment with Ilex latifolia. CONCLUSION: Ilex latifolia ameliorated ischemic injury induced by MCAO/reperfusion in rats, and this neuroprotective effect might be associated with its anti-apoptotic effect, resulting from anti-oxidative and anti-inflammatory actions.[Abstract] [Full Text] [Related] [New Search]