These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Changes in global histone modifications during dedifferentiation in newt lens regeneration.
    Author: Maki N, Tsonis PA, Agata K.
    Journal: Mol Vis; 2010 Sep 16; 16():1893-7. PubMed ID: 21031136.
    Abstract:
    PURPOSE: Reprogramming of pigmented epithelial cells (PECs) is a decisive process in newt lens regeneration. After lens removal PECs in dorsal iris dedifferentiate and revert to stem cell-like cells, and transdifferentiate into lens cells. Our purpose is to know how global histone modifications are regulated in the reprogramming of PECs. METHODS: Iris sections were stained using various histone modification-specific antibodies. The intensity of stained signal in nucleus of PECs was measured and changes in histone modification during dedifferentiation were evaluated. RESULTS: During dedifferentiation of PECs histone modifications related to gene activation were differentially regulated. Although tri-methylated histone H3 lysine 4 (TriMeH3K4) and acetylated histone H4 (AcH4) were increased, acetylated histone H3 lysine 9 (AcH3K9) was decreased during dedifferentiation. Among all gene repression-related modifications analyzed only tri-methylated histone H3 lysine 27 (TriMeH3K27) showed a significant change. Although in the dorsal iris TriMeH3K27 was kept at same levels after lentectomy, in ventral iris it was increased. CONCLUSIONS: Histone modifications are dynamically changed during dedifferentiation of PECs. A coordination of gene activation-related modifications, increasing of TriMeH3K4 and AcH4 and decreasing of AcH3K9, as well as regulation of TriMeH3K27, could be a hallmark of chromatin regulation during newt dedifferentiation.
    [Abstract] [Full Text] [Related] [New Search]