These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Eugenol as an anti-stress agent: modulation of hypothalamic-pituitary-adrenal axis and brain monoaminergic systems in a rat model of stress.
    Author: Garabadu D, Shah A, Ahmad A, Joshi VB, Saxena B, Palit G, Krishnamurthy S.
    Journal: Stress; 2011 Mar; 14(2):145-55. PubMed ID: 21034296.
    Abstract:
    Stress is the leading psychopathological cause for several mental disorders. Physiological and psychological responses to stress are mediated by the hypothalamic?pituitary?adrenal (HPA), sympathoadrenal system (SAS), and brain monoaminergic systems (BMS). Eugenol is reported to substantially modulate brain functions by regulating voltage-gated cation channels and release of neurotransmitters. This study was designed to evaluate the anti-stress effect of eugenol in the 4-h restraint model using rats. Ulcer index was measured as a parameter of the stress response. HPA axis and the SAS were monitored by estimating plasma corticosterone and norepinephrine (NE), respectively. Analysis of NE, serotonin (5-HT), dopamine, and their metabolites in discrete brain regions was performed to understand the role of BMS in the anti-stress effect of eugenol. Stress exposure increased the ulcer index as well as plasma corticosterone and NE levels. Eugenol pretreatment for 7 days decreased the stress-induced increase in ulcer index and plasma corticosterone but not NE levels, indicating a preferential effect on the HPA axis. Furthermore, eugenol showed a ?U?-shaped dose?response curve in decreasing ulcer index and plasma corticosterone levels. Eugenol also reversed the stress-induced changes in 5-HT levels in all brain regions, whereas NE levels were reversed in all brain regions except hippocampus. These results suggest that eugenol possesses significant anti-stress activity in the 4-h restraint model and the effect is due to modulation of HPA and BMS.
    [Abstract] [Full Text] [Related] [New Search]