These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synthesis of chitosan-caffeic acid derivatives and evaluation of their antioxidant activities.
    Author: Aytekin AO, Morimura S, Kida K.
    Journal: J Biosci Bioeng; 2011 Feb; 111(2):212-6. PubMed ID: 21035393.
    Abstract:
    In this study, the antioxidant activities of different molecular weights (M(w)) and grafting ratios of chitosan-caffeic acid derivatives were investigated. The grafting process was achieved using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAC) as covalent connector under different conditions such as molecular-weight of chitosan, molar ratio of chitosan and caffeic acid, reaction temperature, pH, and reaction time. The half-inhibition concentrations (IC₅₀) of products were calculated by reduction of the 1,1-diphenyl picryl hydrazyl in the radical-scavenging assay and reduction of the Fe³+/ferricyanide complex to the ferrous form in reducing power assay. The EDAC showed maximum activity at 3-h, pH 5.0 and room temperature conditions, except high-molecular-weight chitosan in pH 2.0. The products were water-soluble in all pH and showed lower viscosity than native chitosan. The highest grafting ratio of caffeic acid was observed at 15% in low-molecular-weight chitosan. After 5% grafting of caffeic acid into chitosan, the grafting efficiency was increased by decreasing molecular-weight of chitosan at the same conditions. Caffeic acid has main role in the antioxidant activity of products. The maximum IC₅₀ of radical-scavenging activity (0.064 mg/ml) was observed at the highest caffeic acid containing derivative. Water-soluble chitosan and caffeic acid derivatives were obtained by this study without activity loss.
    [Abstract] [Full Text] [Related] [New Search]