These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular mechanisms of ultraviolet radiation-induced immunosuppression. Author: Schwarz T, Schwarz A. Journal: Eur J Cell Biol; 2011; 90(6-7):560-4. PubMed ID: 21035896. Abstract: Solar ultraviolet radiation (UVR) is well known for its immunosuppressive properties. UVR can suppress immune reactions both in a local and a systemic fashion. One of the major molecular mediators of photoimmunosuppression is UVR-induced DNA damage. In contrast to immunosuppressive drugs, UVR does not act in a general but antigen-specific fashion. This is due to the induction of regulatory T cells. Epidermal Langerhans cells harboring UVR-induced DNA damage appear to be essentially involved in the induction of these cells. Cytokines including interleukin (IL)-12, -18 and -23 exert the capacity to reduce UVR-induced DNA damage via induction of DNA repair. Accordingly, these cytokines prevent UVR-mediated immunosuppression. In contrast to IL-18, IL-12 and IL-23 can also inhibit the suppressive activity of regulatory T cells by a mechanism which still needs to be determined. Clarification of the molecular mechanisms underlying UVR-induced immunosuppression will help to develop new immunosuppressive therapeutic strategies by utilizing UVR-induced regulatory T cells for the treatment of immune-mediated diseases. In addition, these insights will contribute to a better understanding of photocarcinogenesis since suppression of the immune system by UVR essentially contributes to the induction of skin cancer.[Abstract] [Full Text] [Related] [New Search]