These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Changes in the activities of amino acid transport systems b0,+ and L during development of preimplantation mouse conceptuses.
    Author: Van Winkle LJ, Campione AL, Gorman JM, Weimer BD.
    Journal: Biochim Biophys Acta; 1990 Jan 15; 1021(1):77-84. PubMed ID: 2104753.
    Abstract:
    Uptake of leucine, lysine, and arginine was predominantly Na(+)-independent in mouse conceptuses through the 8-cell stage of development, and two components of saturable transport were detected for each of these amino acids. Uptake of cationic substrates from solutions near 1 microM was inhibited most strongly by bulky cationic and zwitterionic amino acids whose carbon skeletons do not branch at the alpha or beta positions. By this criterion, system b0,+ accounted for most of the Na(+)-independent arginine and lysine transport in eggs and conceptuses throughout preimplantation development. A small, leucine-resistant, cation-preferring component of amino acid transport was also detected in these cells. Leucine uptake was inhibited most strongly by bicyclic, branched-chain or benzenoid, zwitterionic amino acids in eggs and conceptuses prior to formation of blastocysts. Therefore, it appeared to be taken up mainly by system L, while system b0,+ accounted for a smaller portion of leucine uptake during this developmental period. In blastocysts, in contrast, system L was less conspicuous, and system b0,+ was primarily responsible for Na(+)-independent leucine uptake. The Vmax values for transport of amino acids by system b0,+ increased by up to 30-fold in conceptuses between the 1-cell and blastocyst stages. In contrast, the Vmax value for leucine transport via system L decreased while the Km value increased between these two developmental stages. Although several explanations for these changes are possible, we favor the hypothesis that the density of system L transport sites in plasma membranes decreases while the number of system b0,+ sites increases during development of blastocysts from 1-cell conceptuses.
    [Abstract] [Full Text] [Related] [New Search]