These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Go protein as signal transducer in the pertussis toxin-sensitive phosphatidylinositol pathway. Author: Moriarty TM, Padrell E, Carty DJ, Omri G, Landau EM, Iyengar R. Journal: Nature; 1990 Jan 04; 343(6253):79-82. PubMed ID: 2104959. Abstract: Receptors stimulating phospholipase C do so through heterotrimeric GTP-binding proteins to produce two second messengers, inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol. In spite of the detailed understanding of phospholipase C structure and phosphatidyl inositol signalling, the identity of the GTP-binding protein involved is so far unknown. To address this issue, we have used the Xenopus oocyte in which muscarinic receptors couple to phospholipase C through a pertussis toxin-sensitive GTP-binding protein. In this cell, InsP3 mobilizes intracellular Ca2+ to evoke a Cl- current. The magnitude of this Cl- current is proportional to the amount of InsP3 in the cell, and therefore can be used as an assay for InsP3 production. We report here that the activated alpha-subunit of the GTP-binding protein GO, when directly injected into oocytes, evokes a Cl- current by mobilizing Ca2+ from intracellular InsP3-sensitive stores. We also show that holo-GO, when injected into oocytes, can specifically enhance the muscarinic receptor-stimulated Cl- current. These data indicate that GO can serve as the signal transducer of the receptor-regulated phospholipase C in Xenopus oocytes.[Abstract] [Full Text] [Related] [New Search]