These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Pretargeted 177Lu radioimmunotherapy of carcinoembryonic antigen-expressing human colonic tumors in mice. Author: Schoffelen R, van der Graaf WT, Franssen G, Sharkey RM, Goldenberg DM, McBride WJ, Rossi EA, Eek A, Oyen WJ, Boerman OC. Journal: J Nucl Med; 2010 Nov; 51(11):1780-7. PubMed ID: 21051650. Abstract: UNLABELLED: Pretargeted radioimmunotherapy (PRIT) with bispecific antibodies in combination with a radiolabeled peptide reduces the radiation dose to normal tissues, especially the bone marrow. In this study, the optimization, therapeutic efficacy, and toxicity of PRIT of colon cancer with a (177)Lu-labeled peptide was determined in mice with carcinoembryonic antigen (CEA)-expressing human tumors. METHODS: To obtain the optimal therapeutic efficacy, several strategies were evaluated to increase the total amount of radioactivity targeted to subcutaneous LS174T colon cancer tumors in BALB/c nude mice. First, the maximum amount of bispecific anti-CEA and antihapten antibody TF2 and the peptide IMP288 that could be targeted was determined. Second, the tumor targeting of repeated administrations of radiolabeled IMP288 was investigated. Mice received 1 TF2 injection, followed by multiple IMP288 injections (3-h interval) or multiple cycles, with each IMP288 administration preceded by a new TF2 injection (72-h interval). PRIT was administered at maximum doses of TF2 and (177)Lu-labeled IMP288 in groups of 9 mice with subcutaneous LS174T tumors. Mice received 1, 2, or 3 successive cycles of treatment (26 MBq/mouse/cycle) or carrier only. The primary endpoint was survival; secondary endpoints were tumor growth, body weight, bone marrow, and renal toxicity. RESULTS: The highest amount of radioactivity delivered to a subcutaneous colon tumor was achieved by the administration of 5.0 nmol of TF2 and 0.28 nmol of IMP288 in 3 successive cycles, with each IMP288 preceded by a new TF2 injection (72-h interval). PRIT effectively delayed tumor growth and prolonged survival significantly. Higher activity doses, administered in successive cycles, correlated with longer survival: the median survival of untreated mice was 13 d (range, 6-20 d), whereas that of mice treated with 1, 2, or 3 cycles of PRIT was 24 (range, 24-31 d), 45 (range, 38 ≥ 130 d), and 65 (range, 48 ≥ 130 d) days, respectively. Toxicity was limited: no significant changes in mean body weight were measured. Minimal changes in leukocyte counts were measured at 2 and 3 wk after injection, with full recovery within 7 wk after treatment. Platelet counts were unaffected. Serum creatinine levels were not increased significantly; thus, there was no indication of acute renal toxicity. CONCLUSION: This study indicates that PRIT in mice is an effective treatment modality against colon cancer, with limited toxicity.[Abstract] [Full Text] [Related] [New Search]