These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gene regulation patterns in triterpene biosynthetic pathway driven by overexpression of squalene synthase and methyl jasmonate elicitation in Bupleurum falcatum.
    Author: Kim YS, Cho JH, Park S, Han JY, Back K, Choi YE.
    Journal: Planta; 2011 Feb; 233(2):343-55. PubMed ID: 21053012.
    Abstract:
    The root of Bupleurum falcatum L. (Apiaceae) has long been one of the most important traditional herbal medicines in Asian countries. A group of triterpene saponins (saikosaponins) are the major constituents of this plant. Squalene synthase (SS) may play a regulatory role in directing triterpene intermediates and sterol pathways. Here, we investigated the regulatory role of the squalene synthase (BfSS1) gene in the biosynthesis of phytosterol and triterpene in B. falcatum. BfSS1 mRNA accumulated ubiquitously in plant organs and markedly increased in roots after treatment with methyl jasmonate (MeJA), ABA and ethephon. Transgenic B. falcatum constructs overexpressing BfSS1 in the sense and antisense orientations were assembled using the Agrobacterium-mediated method. Transgenic roots overexpressing BfSS1 in the sense orientation resulted in enhanced production of both phytosterol and saikosaponins. Overexpression of the BfSS1 gene in the sense orientation increased the mRNA accumulation of downstream genes such as squalene epoxidase and cycloartenol synthase but unexpectedly decreased the mRNA levels of β-amyrin synthase (β-AS), a triterpene synthase mRNA. MeJA treatment of wild-type roots strongly stimulated β-AS mRNA accumulation and saikosaponin production but suppressed phytosterol production. MeJA treatment of transgenic roots overexpressing BfSS1 in the sense orientation failed to stimulate β-AS mRNA accumulation but still enhanced saikosaponin and phytosterol production. These results indicate that overexpression of BfSS1 in B. falcatum regulates more powerfully the downstream genes than elicitor (MeJA) treatment in triterpene and phytosterol biosynthesis.
    [Abstract] [Full Text] [Related] [New Search]