These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A theoretical approach to the photochemical activation of matrix isolated aluminum atoms and their reaction with methane. Author: Pacheco-Blas MA, Novaro OA, Pacheco-Sánchez JH. Journal: J Chem Phys; 2010 Nov 07; 133(17):174307. PubMed ID: 21054032. Abstract: The photochemical activation of Al atoms in cryogenic matrices to induce their reaction with methane has been experimentally studied before. Here, a theoretical study of the nonadiabatic transition probabilities for the ground ((2)P:3s(2)3p(1)) and the lowest excited states ((2)S:3s(2)4s(1) and (2)D:3s(2)3d(1)) of an aluminum atom interacting with a methane molecule (CH(4)) was carried out through ab initio Hartree-Fock self-consistent field calculations. This was followed by a multiconfigurational study of the correlation energy obtained by extensive variational and perturbational configuration interaction analyses using the CIPSI program. The (2)D state is readily inserted into a C-H bond, this being a prelude to a sequence of avoided crossings with the initially repulsive (to CH(4)) lower lying states (2)P and (2)S. We then use a direct extension of the Landau-Zener theory to obtain transition probabilities at each avoided crossing, allowing the formation of an HAlCH(3) intermediate that eventually leads to the final pair of products H+AlCH(3) and HAl+CH(3).[Abstract] [Full Text] [Related] [New Search]