These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Small conductance calcium-activated potassium type 2 channels regulate alcohol-associated plasticity of glutamatergic synapses. Author: Mulholland PJ, Becker HC, Woodward JJ, Chandler LJ. Journal: Biol Psychiatry; 2011 Apr 01; 69(7):625-32. PubMed ID: 21056409. Abstract: BACKGROUND: Small conductance calcium-activated potassium type 2 channels (SK2) control excitability and contribute to plasticity by reducing excitatory postsynaptic potentials. Recent evidence suggests that SK2 channels form a calcium-dependent negative-feedback loop with synaptic N-methyl-D-aspartate (NMDA) receptors. Addiction to alcohol and other drugs of abuse induces plastic changes in glutamatergic synapses that include the targeting of NMDA receptors to synaptic sites; however, the role of SK2 channels in alcohol-associated homeostatic plasticity is unknown. METHODS: Electrophysiology, Western blot, and behavioral analyses were used to quantify changes in hippocampal small conductance calcium-activated potassium (SK) channel function and expression using well-characterized in vitro and in vivo models of chronic alcohol exposure. RESULTS: Chronic ethanol reduced apamin-sensitive SK currents in cornu ammonis 1 pyramidal neurons that were associated with a downregulation of surface SK2 channels. Blocking SK channels with apamin potentiated excitatory postsynaptic potentials in control but not ethanol-treated cornu ammonis 1 pyramidal neurons, suggesting that chronic ethanol disrupts the SK channel-NMDA receptor feedback loop. Alcohol reduced expression of SK2 channels and increased expression of NMDA receptors at synaptic sites in a mouse model. Positive modulation of SK function by 1-EBIO decreased alcohol withdrawal hyperexcitability and attenuated ethanol withdrawal neurotoxicity in hippocampus. The 1-EBIO also reduced seizure activity in mice undergoing withdrawal. CONCLUSIONS: These results provide evidence that SK2 channels contribute to alcohol-associated adaptive plasticity of glutamatergic synapses and that positive modulation of SK channels reduces the severity of withdrawal-related hyperexcitability. Therefore, SK2 channels appear to be critical regulators of alcohol-associated plasticity and may be novel therapeutic targets for the treatment of addiction.[Abstract] [Full Text] [Related] [New Search]