These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of hyperosmotic challenge on basolateral membrane potential in rabbit urinary bladder. Author: Donaldson PJ, Lewis SA. Journal: Am J Physiol; 1990 Feb; 258(2 Pt 1):C248-57. PubMed ID: 2106264. Abstract: In the rabbit urinary bladder, serosal hyperosmotic challenge (SHOC) with either 33 mM NaCl or 66 mM mannitol caused basolateral membrane potential (Vbl) to initially depolarize from -52.6 +/- 1.6 to -48.4 +/- 1.4 mV, followed by a recovery of Vbl to -57.5 +/- 1.3 mV after 13.7 +/- 1.0 min. The voltage recovery was dependent on both serosal HCO3- and Cl-, and in the absence of both, Vbl depolarized to -11.6 +/- 1.5 mV and the ratio of apical-to-basolateral resistance (Ra/Rbl) decreased from 21.0 +/- 3.4 to 8.3 +/- 3.1. This decrease in Ra/Rbl and consequent depolarization of Vbl is caused by a decrease in basolateral K+ conductance. Replacement of serosal Cl- with NO3- or SCN- followed by SHOC caused a sustained depolarization of Vbl to -32.5 +/- 4.4 and -40.9 +/- 0.9 mV, respectively. However, when Br- was used to replace Cl-, voltage recovery occurred but was slowed (24.0 +/- 2.7 min) and reduced in magnitude (-47.5 +/- 3.5 mV). Addition of amiloride (1 mM) or niflumic acid (100 microM), but not bumetanide (1 microM), to the serosal bathing solution inhibited voltage recovery causing Vbl to depolarize to -36.3 +/- 2.6 and -41.5 +/- 4.5 mV, respectively. Serosal addition of ouabain after SHOC caused Vbl to depolarize by 10.8 +/- 0.9 mV in 2 min. We speculate that the SHOC-induced initial depolarization of Vbl is a loss of Ba2(+)-sensitive K+ conductance caused by cell shrinkage. The subsequent repolarization/hyperpolarization of Vbl is caused by an enhanced basolateral membrane Na+ pump current and a reappearance of the Ba2(+)-sensitive K+ conductance. The parallel operation of Na(+)-H+ and Cl(-)-HCO3- exchanges will then supply Na+ for the pump current and, via cellular accumulation of Na+, K+, and Cl-, might result in a partial recovery of cell volume and thus Ba2(+)-sensitive K+ conductance.[Abstract] [Full Text] [Related] [New Search]