These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Electricity generation and quinoline degradation of pure strains and mixed strains in the microbial fuel cell].
    Author: Chen SS, Zhang CP, Liu GL, Zhang RD, Li MC, Quan XC.
    Journal: Huan Jing Ke Xue; 2010 Sep; 31(9):2148-54. PubMed ID: 21072938.
    Abstract:
    Microbial flora composition of microbial fuel cells (MFC) is important to the electricity generation. Four bacterium strains Q1, b, c and d which represent all different morphology of culturable bacterium were isolated from a MFC using 200 mg x L(-1) quinoline as the fuel and operating for at least 210 days. Strains Q1, c and d were Pseudomonas sp. based on 16S rDNA sequence analysis, while strain b was Burkholderia sp. Double-chamber MFCs using 200 mg x L(-1) quinoline and 300 mg x L(-1) glucose as the fuel and potassium ferricyanide as the electron acceptor were constructed. Results showed that strain b, c and d were non-electrogenesis. The electrical charges of MFC inoculated electrogenesis strain Q1 with non-electrogenesis strain b, c and d respectively were 3.00, 3.57 and 5.13C, and the columbic efficiency were 3.85%, 4.59% and 6.58%, which were all lower than that inoculated with pure Q1, because of the interspecific competition of electrogenesis and non-electrogenesis bacteria. Combinations of Q1 with the other three strains respectively resulted in 100% of quinoline degradation rates within 24h, which is better than pure cultures, that is, mixed microbial populations perform better in MFC when complex organics are used as the fuel. GC/MS analyses showed that only 2(1H)-quinolinone and phenol existed in the effluent of the MFC, which was inoculated with only Q1 or mixed bacteria.
    [Abstract] [Full Text] [Related] [New Search]