These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Physicochemical characterization and drug-release properties of celecoxib hot-melt extruded glass solutions. Author: Andrews GP, Abu-Diak O, Kusmanto F, Hornsby P, Hui Z, Jones DS. Journal: J Pharm Pharmacol; 2010 Nov; 62(11):1580-90. PubMed ID: 21072971. Abstract: The interest in hot-melt extrusion (HME) as a drug delivery technology for the production of glass solutions is growing rapidly. HME glass solutions have a tendency to recrystallize during storage and also typically have a very dense structure, restricting the ingress of dissolution fluid and retarding drug release. In this study, we have used HME to manufacture glass solutions containing celecoxib (CX) and polyvinylpyrrolidone (PVP) and have assessed the use of supercritical carbon dioxide (scCO2) as a pore-forming agent to enhance drug release. Differential scanning calorimetry confirmed the formation of glass solutions following extrusion. All extrudates exhibited a single glass transition temperature (Tg), positioned between the Tg values of CX and PVP. The instability of glass solutions is a significant problem during storage. Stabilization may be improved through the appropriate choice of excipient to facilitate drug–polymer interactions. The Gordon–Taylor equation showed that the Tg values of all extrudates expected on ideal mixing were lower than those observed experimentally. This may be indicative of drug–polymer interactions that decrease free volume and elevate the Tg. Molecular interactions between CX and PVP were further confirmed using Fourier transform infrared and Raman spectroscopy. Storage stability of the extrudates was shown to be dependent on drug loading. Samples containing a higher CX loading were less stable, which we ascribed to decreased Tg and hence increased mobility within the drug–polymer matrix. The solubility of CX was improved through the formulation of extruded glass solutions, but release rate was relatively slow. Exposure of extrudates to scCO2 had no effect on the solid-state properties of CX but did produce a highly porous structure. The drug-release rate from extrudates after scCO2 exposure was significantly higher.[Abstract] [Full Text] [Related] [New Search]