These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Textural, structural, and morphological characterizations and catalytic activity of nanosized CeO(2)-MO(x) (M=Mg(2+), Al(3+), Si(4+)) mixed oxides for CO oxidation.
    Author: Yu Q, Wu X, Tang C, Qi L, Liu B, Gao F, Sun K, Dong L, Chen Y.
    Journal: J Colloid Interface Sci; 2011 Feb 01; 354(1):341-52. PubMed ID: 21074167.
    Abstract:
    The present work focuses on the combination of ceria with another oxide of different ionic valences from period 3 (Mg(2+), Al(3+), and Si(4+)) using coprecipitation method, followed by calcination at 450 and 750°C, respectively. The textural, structural, morphological and redox properties of nanosized ceria-magnesia, ceria-alumina and ceria-silica mixed oxides have been investigated by means of N(2) physisorption, XRD, Raman, HRTEM, DRS, FT-IR, and H(2)-TPR technologies. XRD results of these mixed oxides reveal that only nanocrystalline ceria (ca. 3-6nm for the 450°C calcined samples) could be observed. The grain size of ceria increases with the increasing calcination temperature from 450 to 750°C due to sintering effect. The highest specific surface area is obtained at CeO(2)-Al(2)O(3) mixed oxides when calcination temperature reaches 750°C. Raman spectra display the cubic fluorite structure of ceria and the existence of oxygen vacancies, and displacement of oxygen ions from their normal lattice positions in the ceria-based mixed oxides. DRS measurements confirm that the smaller the grain size of the ceria, the higher indirect band gap energy. H(2)-TPR results suggest that the reductions of surface and bulk oxygen of ceria were predominant at low and high calcination temperature, respectively. Finally, CO oxidation were performed over these ceria-based mixed oxides, and the combination of CeO(2)-Al(2)O(3) exhibited highest activity irrespective of calcination temperature, which may due to excellent textural/structural properties, good homogeneity, and redox abilities.
    [Abstract] [Full Text] [Related] [New Search]