These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: NADPH oxidase 4 mediates TGF-β-induced smooth muscle α-actin via p38MAPK and serum response factor.
    Author: Martin-Garrido A, Brown DI, Lyle AN, Dikalova A, Seidel-Rogol B, Lassègue B, San Martín A, Griendling KK.
    Journal: Free Radic Biol Med; 2011 Jan 15; 50(2):354-62. PubMed ID: 21074607.
    Abstract:
    In contrast to other cell types, vascular smooth muscle cells modify their phenotype in response to external signals. NADPH oxidase 4 (Nox4) is critical for maintenance of smooth muscle gene expression; however, the underlying mechanisms are incompletely characterized. Using smooth muscle α-actin (SMA) as a prototypical smooth muscle gene and transforming growth factor-β (TGF-β) as a differentiating agent, we examined Nox4-dependent signaling. TGF-β increases Nox4 expression and activity in human aortic smooth muscle cells (HASMC). Transfection of HASMC with siRNA against Nox4 (siNox4) abolishes TGF-β-induced SMA expression and stress fiber formation. siNox4 also significantly inhibits TGF-β-stimulated p38MAPK phosphorylation, as well as that of its substrate, mitogen-activated protein kinase-activated protein kinase-2. Moreover, the p38MAPK inhibitor SB-203580 nearly completely blocks the SMA increase induced by TGF-β. Inhibition of either p38MAPK or NADPH oxidase-derived reactive oxygen species impairs the TGF-β-induced phosphorylation of Ser103 on serum response factor (SRF) and reduces its transcriptional activity. Binding of SRF to myocardin-related transcription factor (MRTF) is also necessary, because downregulation of MRTF by siRNA abolishes TGF-β-induced SMA expression. Taken together, these data suggest that Nox4 regulates SMA expression via activation of a p38MAPK/SRF/MRTF pathway in response to TGF-β.
    [Abstract] [Full Text] [Related] [New Search]