These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Concentric decile segmentation of white and hypopigmented areas in dermoscopy images of skin lesions allows discrimination of malignant melanoma.
    Author: Dalal A, Moss RH, Stanley RJ, Stoecker WV, Gupta K, Calcara DA, Xu J, Shrestha B, Drugge R, Malters JM, Perry LA.
    Journal: Comput Med Imaging Graph; 2011 Mar; 35(2):148-54. PubMed ID: 21074971.
    Abstract:
    Dermoscopy, also known as dermatoscopy or epiluminescence microscopy (ELM), permits visualization of features of pigmented melanocytic neoplasms that are not discernable by examination with the naked eye. White areas, prominent in early malignant melanoma and melanoma in situ, contribute to early detection of these lesions. An adaptive detection method has been investigated to identify white and hypopigmented areas based on lesion histogram statistics. Using the Euclidean distance transform, the lesion is segmented in concentric deciles. Overlays of the white areas on the lesion deciles are determined. Calculated features of automatically detected white areas include lesion decile ratios, normalized number of white areas, absolute and relative size of largest white area, relative size of all white areas, and white area eccentricity, dispersion, and irregularity. Using a back-propagation neural network, the white area statistics yield over 95% diagnostic accuracy of melanomas from benign nevi. White and hypopigmented areas in melanomas tend to be central or paracentral. The four most powerful features on multivariate analysis are lesion decile ratios. Automatic detection of white and hypopigmented areas in melanoma can be accomplished using lesion statistics. A neural network can achieve good discrimination of melanomas from benign nevi using these areas. Lesion decile ratios are useful white area features.
    [Abstract] [Full Text] [Related] [New Search]