These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In situ growth of catalytic active Au-Pt bimetallic nanorods in thermoresponsive core-shell microgels. Author: Lu Y, Yuan J, Polzer F, Drechsler M, Preussner J. Journal: ACS Nano; 2010 Dec 28; 4(12):7078-86. PubMed ID: 21082786. Abstract: Here, we demonstrate that bimetallic Au-Pt nanorods (NRs) can be grown in situ into thermosensitive core-shell microgel particles by a novel two-step approach. In the first step, Au NRs with an average width of 6.6 ± 0.3 nm and length of 34.5 ± 5.2 nm (aspect ratio 5.2 ± 0.6) were homogeneously embedded into the shell of PNIPA networks. The volume transition of the microgel network leads to a strong red shift of the longitudinal plasmon band of the Au NRs. In the second step, platinum was preferentially deposited onto the tips of Au NRs to form dumbbell-shaped bimetallic nanoparticles. The novel synthesis forms bimetallic Au-Pt NRs immobilized in microgels without impeding their colloidal stability. Quantitative analysis of the catalytic activity for the reduction of 4-nitrophenol indicates that bimetallic Au-Pt NRs show highly enhanced catalytic activity, which is due to the synergistic effect of bimetallic nanoparticles. The catalytic activity of immobilized Au-Pt NRs can be modulated by the volume transition of thermosensitive microgels. This demonstrates that core-shell microgels are capable of serving as "smart nanoreactors" for the catalytic active bimetallic nanoparticles with controlled morphology and high colloidal stability.[Abstract] [Full Text] [Related] [New Search]