These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oolong tea theasinensins attenuate cyclooxygenase-2 expression in lipopolysaccharide (LPS)-activated mouse macrophages: structure-activity relationship and molecular mechanisms. Author: Hou DX, Masuzaki S, Tanigawa S, Hashimoto F, Chen J, Sogo T, Fujii M. Journal: J Agric Food Chem; 2010 Dec 22; 58(24):12735-43. PubMed ID: 21082860. Abstract: Oolong tea theasinensins are a group of tea polyphenols different from green tea catechins and black tea theaflavins. The present study reports the inhibitory effects of oolong tea theasinensins on the expression of cyclooxygenase-2 (COX-2) and underlying molecular mechanisms in lipopolysaccharide (LPS)-activated murine macrophage RAW264 cells. The structure-activity data revealed that the galloyl moiety of theasinensins played an important role in the inhibitory actions. Theasinensin A, a more potent inhibitor, caused a dose-dependent inhibition of mRNA, protein, and promoter activity of COX-2. An electrophoretic mobility shift assay (EMSA) revealed that theasinensin A reduced the complex of NF-κB- and AP-1-DNA in the promoter of COX-2. Signaling analysis demonstrated that theasinensin A attenuated IκB-α degradation, nuclear p65 accumulation, and c-Jun phosphorylation. Furthermore, theasinensin A suppressed the phosphorylation of MAPKs, IκB kinase α/β (IKKα/β), and TGF-β activated kinase (TAK1). These data demonstrated that the down-regulation of TAK1-mediated MAPKs and NF-κB signaling pathways might be involved in the inhibition of COX-2 expression by theasinensin A. These findings provide the first molecular basis for the anti-inflammatory properties of oolong tea theasinensins.[Abstract] [Full Text] [Related] [New Search]