These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Daily red wine consumption improves vascular function by a soluble guanylyl cyclase-dependent pathway.
    Author: Botden IP, Langendonk JG, Meima ME, Boomsma F, Seynhaeve AL, ten Hagen TL, Jan Danser AH, Sijbrands EJ.
    Journal: Am J Hypertens; 2011 Feb; 24(2):162-8. PubMed ID: 21088673.
    Abstract:
    BACKGROUND: Polyphenols in red wine are supposed to improve endothelial function. We investigated whether daily red wine consumption improves in-vivo vascular function by reducing endothelin-1 (ET-1). Additional pathways mediating this effect were studied using porcine coronary arteries (PCAs). METHODS: Eighteen young healthy women drank red wine daily for 3 weeks. Vascular function was evaluated by determining forearm blood flow (FBF) responses to endothelium-dependent (acetylcholine (ACh)) and endothelium-independent (sodium nitroprusside (SNP)) vasodilators. PCAs were suspended in organ baths and exposed to the endothelium-dependent vasodilator bradykinin, the nitric oxide (NO) donor S-nitroso-N-acetyl-L,L-penicillamine (SNAP) and/or red wine extract (RWE). RESULTS: ACh-induced and SNP-induced FBF increases were equally enhanced after 3 weeks of red wine consumption, but an immediate enhancement (i.e., after drinking the first glass) was not observed. Vice versa, plasma ET-1 levels were not decreased after 3 weeks, but we observed an acute drop after drinking one glass of wine. RWE relaxed preconstricted PCAs in an endothelium-, NO-, and soluble guanylyl cyclase (sGC)/guanosine-3',5'-cyclic monophosphate (cGMP)-dependent manner. Short RWE exposure reduced the response to bradykinin and SNAP by inactivating sGC. This effect disappeared upon prolonged RWE exposure. CONCLUSIONS: The enhanced FBF response following 3 weeks of red wine consumption, but not after one glass, reflects a change in smooth muscle sensitivity. Alterations in sGC responsiveness/activity, rather than changes in ET-1, appear to underlie this phenomenon.
    [Abstract] [Full Text] [Related] [New Search]