These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: DNA hybridization as a guide to phylogeny: chemical and physical limits.
    Author: Schmid CW, Marks J.
    Journal: J Mol Evol; 1990 Mar; 30(3):237-46. PubMed ID: 2109086.
    Abstract:
    The technique of forming interspecific DNA heteroduplexes and estimating phylogenetic distances from the depression in their duplex melting temperature has several physical and chemical constraints. These constraints determine the maximum phylogenetic distance that may be estimated by this technique and the most appropriate method of analyzing that distance. Melting curves of self-renatured single copy primate DNAs reveal the presence of components absent from the renaturation products of exactly paired sequences. This observation, which confirms existing literature, challenges a fundamental assumption: that orthologous (i.e., corresponding) DNA sequences in the divergent species are being compared in DNA heteroduplex melting experiments. As a model system, the thermal stabilities of heteroduplexes formed between a human alpha-globin cDNA and four alpha-like globin genes isolated from chimpanzee are qualitatively compared. The results of this comparison show that the cross-hybrids of imperfectly matched gene duplicates from divergent species can contribute to the additional components that are present in renatured single copy DNAs. Single copy DNA, as usually defined, includes sequence duplicates that will obscure phylogenetic comparisons in a mass hybridization of genomes.
    [Abstract] [Full Text] [Related] [New Search]