These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Chemotherapy resistance induced by interleukin-6 in ovarian cancer cells and its signal transduction pathways].
    Author: Wang Y, Li LZ, Ye L, Niu XL, Liu X, Zhu YQ, Sun WJ, Liang YJ.
    Journal: Zhonghua Fu Chan Ke Za Zhi; 2010 Sep; 45(9):691-8. PubMed ID: 21092551.
    Abstract:
    OBJECTIVE: To study the mechanism of chemotherapy resistance caused by interleukin-6 (IL-6) in ovarian cancer cells and its related signal pathways. METHODS: Ovarian cancer cell lines A2780 (IL-6 receptor positive, while non-IL-6-expressing and cisplatin/paclitaxel-responsive) and SKOV3 cell lines (overexpressing of IL-6 receptor and IL-6 and cisplatin/paclitaxel-resistant) were suitable models for this study. The effect of exogenous (a short period of treatment with recombination IL-6) and endogenous IL-6 (by transfecting with plasmid encoding for sense IL-6) in A2780 cells or deleting of endogenous IL-6 expression in SKOV3 cells (by transfecting with plasmid encoding for antisense IL-6) on the sensitivity to cisplatin and paclitaxel was investigated. Meanwhile, the mechanism of chemotherapy resistance caused by IL-6 in ovarian cancer cells and its related signal pathways were also analyzed. RESULTS: We found that both exogenous and endogenous IL-6 induce cisplatin and paclitaxel resistance in non-IL-6-expressing A2780 cells (the resistance multiple to cisplatin and paclitaxel was: exogenous, 6.25 and 7.31; endogenous, 7.13-8.34 and 7.61-10.70), while deleting of endogenous IL-6 expression in IL-6-overexpressing SKOV3 cells promotes its sensitivity to anticancer drugs (the resistance multiple to cisplatin and paclitaxel was 0.15 and 0.10, 0.10 and 0.08). IL-6 significantly up-regulated the expression levels of mRNA and protein of drug resistance-associated genes, MDR1 and GST-π, and apoptosis-inhibiting genes, bcl-2, bcl-xL and XIAP in a dose-dependent manner in A2780 cells. In accordance with this finding, the mRNA and protein levels of MDR1 and GST-π enhanced in sense IL-6-transfected A2780 cells, and reduced in antisense IL-6-transfected SKOV3 cells compared with the corresponding parental and control vector-transfected cells, which had no difference. It was found that PD98059 [mitogen-activated protein kinase-extracellular signal-regulated kinase (MEK) inhibitor] and wortmannin [phosphatidylinositol 3-kinase (PI3K) inhibitor] significantly antagonized IL-6-induced phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B (Akt), respectively, and both of them blocked IL-6-induced cisplatin and paclitaxel resistance and the inhibitory effects of PD98059 and wortmannin were dependent on its concentration. CONCLUSIONS: These data suggest that IL-6-induced chemoresistance may be associated with increase of both drug resistance-associated genes (MDR1 and GST-π) and apoptosis-inhibiting genes (bcl-2, bcl-xL and XIAP), and activation of MEK/ERK and PI3K/Akt. Therefore, modulation of IL-6 expression or its related signaling pathway may be a promising strategy of treatment for drug-resistant ovarian cancer.
    [Abstract] [Full Text] [Related] [New Search]