These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Author: Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, Dhawan A. Journal: Toxicol In Vitro; 2011 Feb; 25(1):231-41. PubMed ID: 21092754. Abstract: Titanium dioxide nanoparticles (TiO(2) NPs) are among the top five NPs used in consumer products, paints and pharmaceutical preparations. Since, exposure to such nanoparticles is mainly through the skin and inhalation, the present study was conducted in the human epidermal cells (A431). A mild cytotoxic response of TiO(2) NPs was observed as evident by the MTT and NR uptake assays after 48 h of exposure. However, a statistically significant (p<0.05) induction in the DNA damage was observed by the Fpg-modified Comet assay in cells exposed to 0.8 μg/ml TiO(2) NPs (2.20±0.26 vs. control 1.24±0.04) and higher concentrations for 6 h. A significant (p<0.05) induction in micronucleus formation was also observed at the above concentration (14.67±1.20 vs. control 9.33±1.00). TiO(2) NPs elicited a significant (p<0.05) reduction in glutathione (15.76%) with a concomitant increase in lipid hydroperoxide (60.51%; p<0.05) and reactive oxygen species (ROS) generation (49.2%; p<0.05) after 6h exposure. Our data demonstrate that TiO(2) NPs have a mild cytotoxic potential. However, they induce ROS and oxidative stress leading to oxidative DNA damage and micronucleus formation, a probable mechanism of genotoxicity. This is perhaps the first study on human skin cells demonstrating the cytotoxic and genotoxic potential of TiO(2) NPs.[Abstract] [Full Text] [Related] [New Search]