These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Optimization-based prediction of asymmetric human gait. Author: Xiang Y, Arora JS, Abdel-Malek K. Journal: J Biomech; 2011 Feb 24; 44(4):683-93. PubMed ID: 21092968. Abstract: An optimization-based formulation and solution method are presented to predict asymmetric human gait for a large-scale skeletal model. Predictive dynamics approach is used in which both the joint angles and joint torques are treated as unknowns in the equations of motion. For the optimization formulation, the joint angle profiles are treated as the primary unknowns, and velocities and accelerations are calculated using them. In numerical implementation, the joint angle profiles are discretized using the B-spline interpolation. An algorithm is presented to inversely calculate the joint torques and the ground reaction forces. The sum of the joint-torques squared, called the dynamic effort, is minimized as the human performance measure. Constraints are imposed on the joint strengths (torques) and joint ranges of motion along with other physical constraints. The formulation is validated by simulating a symmetric gait and comparing the results with the experimental data. Then asymmetric gait motion is simulated, where the left and right step lengths are different. The kinematics and kinetics results from the simulation are presented and discussed. Predicted ground reaction forces are explained by using the inverted pendulum model. Predicted kinematics and kinetics have trends that are similar to those reported in the literature. Potential practical applications of the formulation and the solution approach are discussed.[Abstract] [Full Text] [Related] [New Search]