These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of liver microsome-mediated mutagenesis, metabolism and DNA-binding of benzo[a]pyrene and benzo[a]pyrene 7,8-dihydrodiol in the rat following glucose administration.
    Author: Vance RE, Teel RW, Strother A.
    Journal: Cancer Lett; 1990 Apr 20; 50(2):149-56. PubMed ID: 2109652.
    Abstract:
    Aroclor 1254-induced rat liver microsomes prepared from control and glucose-treated rats (30% glucose in drinking water 48 h prior to sacrifice) were used in studies of benzo[a]pyrene (BaP) and BaP 7,8-dihydrodiol (BaP 7,8-DHD)-induced mutagenesis in Salmonella typhimurium TA100. Microsome-dependent metabolism and metabolite binding of BaP and BaP 7,8-DHD to calf thymus DNA was also investigated. BaP-induced mutagenesis in TA100 was inhibited 27% and BaP 7,8-DHD-induced mutagenesis was inhibited 55% by microsomes from glucose-treated rats. [3H]BaP and [3H]BaP 7,8-DHD metabolite binding to DNA was inhibited 17% and 20%, respectively. High performance liquid chromatographic (hplc) analysis of enzyme-hydrolyzed DNA yielded 7R and 7S-diol epoxide-1 deoxyguanosine (BPDE-1:dG) adducts and BPDE-2:dG adducts of [3H]BaP and [3H]BaP 7,8-DHD. These adducts were inhibited 38% and 50%, respectively, by microsomes from glucose-treated rats. Hplc analysis of organosoluble metabolites of [3H]BaP and [3H]BaP 7,8-DHD showed an inhibition of metabolism of 28% and 50%, respectively, by microsomes from glucose-treated rats. The inhibition of metabolism correlated with the effect of glucose treatment on inhibition of BaP and BaP 7,8-DHD-induced mutagenesis and adduct formation. These results suggest that the mechanism by which glucose produces its effects on mutagenesis, DNA-binding and adduct formation is by an inhibition of microsome-mediated metabolism of BaP and BaP 7,8-DHD.
    [Abstract] [Full Text] [Related] [New Search]