These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: AGD5 is a GTPase-activating protein at the trans-Golgi network.
    Author: Stefano G, Renna L, Rossi M, Azzarello E, Pollastri S, Brandizzi F, Baluska F, Mancuso S.
    Journal: Plant J; 2010 Dec; 64(5):790-9. PubMed ID: 21105926.
    Abstract:
    ARF-GTPases are important proteins that control membrane trafficking events. Their activity is largely influenced by the interplay between guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), which facilitate the activation or inactivation of ARF-GTPases, respectively. There are 15 predicted proteins that contain an ARF-GAP domain within the Arabidopsis thaliana genome, and these are classified as ARF-GAP domain (AGD) proteins. The function and subcellular distribution of AGDs, including the ability to activate ARF-GTPases in vivo, that remain largely uncharacterized to date. Here we show that AGD5 is localised to the trans-Golgi network (TGN), where it co-localises with ARF1, a crucial GTPase that is involved in membrane trafficking and which was previously shown to be distributed on Golgi and post-Golgi structures of unknown nature. Taking advantage of the in vivo AGD5-ARF1 interaction at the TGN, we show that mutation of an arginine residue that is critical for ARF-GAP activity of AGD5 leads to longer residence of ARF1 on the membranes, as expected if GTP hydrolysis on ARF1 was impaired due to a defective GAP. Our results establish the nature of the post-Golgi compartments in which ARF1 localises, as well as identifying the role of AGD5 in vivo as a TGN-localised GAP. Furthermore, in vitro experiments established the promiscuous interaction between AGD5 and the plasma membrane-localised ADP ribosylation factor B (ARFB), confirming that ARF-GAP specificity for ARF-GTPases within the cell environment may be spatially regulated.
    [Abstract] [Full Text] [Related] [New Search]