These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The protective effect of peony extract on acute myocardial infarction in rats. Author: Mo X, Zhao N, Du X, Bai L, Liu J. Journal: Phytomedicine; 2011 Apr 15; 18(6):451-7. PubMed ID: 21112198. Abstract: To investigate the protective effects, and the mechanisms involved, of an extract of the medicinal herb radix paeoniae rubra (PE) on cardiovascular disease, acute myocardial infarction (AMI) was induced by ligation of the left coronary artery in Sprague Dawley rats. Animals were randomly divided into six groups: control, sham-operated, AMI, AMI+PE low dose, AMI+PE high dose, and AMI+positive control. Myocardial enzymes, cytokines, oxidative stress, blood coagulation times, a marker for early stage apoptosis, caspase-3 activity, and expression levels of bax, bcl-2 and fas in isolated primary cardiomyocytes were examined. In contrast with control and sham groups, significant increases in the following parameters were measured in the blood of AMI group animals: activities of cardiac enzymes including glutamic oxaloacetic transaminase, creatine kinase, creatine kinase-MB, lactate dehydrogenase, α-hydroxybutyric dehydrogenase, and levels of IL-10, TNFα, and lipid peroxidation. Under the same conditions, superoxide dismutase activity, thrombin time and activated partial thromboplastin time decreased significantly. PE showed a dose-dependent protection against AMI-induced alterations in cardiac enzymes, cytokines, oxidative stress, and coagulation. In AMI cardiomyocytes, compared with control and sham groups, the left ventricular end-diastolic pressure, early stage apoptosis, caspase-3 activity and expression levels of bax, bcl-2 and fas significantly increased, while the ratio bcl-2/bax decreased. PE showed dose-dependent protection. These results suggest that PE is an effective agent for protecting against AMI; possible mechanisms may include the regulation of cardiac enzymes, cytokines, oxidative stress, coagulation and apoptosis.[Abstract] [Full Text] [Related] [New Search]