These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vestibular primary afferent responses to sound and vibration in the guinea pig. Author: Curthoys IS, Vulovic V. Journal: Exp Brain Res; 2011 May; 210(3-4):347-52. PubMed ID: 21113779. Abstract: This study tested whether air-conducted sound and bone-conducted vibration activated primary vestibular afferent neurons and whether, at low levels, such stimuli are specific to particular vestibular sense organs. In response to 500 Hz bone-conducted vibration or 500 Hz air-conducted sound, primary vestibular afferent neurons in the guinea pig fall into one of two categories--some neurons show no measurable change in firing up to 2 g peak-to-peak or 140 dB SPL. These are semicircular canal neurons (regular or irregular) and regular otolith neurons. In sharp contrast, otolith irregular neurons show high sensitivity: a steep increase in firing as stimulus intensity is increased. These sensitive neurons typically, but not invariably, were activated by both bone-conducted vibration and air-conducted sound, they originate from both the utricular and saccular maculae, and their sensitivity underpins new clinical tests of otolith function.[Abstract] [Full Text] [Related] [New Search]