These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Solvent- and pH-induced self-assembly of cationic meta-linked poly(phenylene ethynylene): effects of helix formation on amplified fluorescence quenching and Förster resonance energy transfer. Author: Huang YQ, Fan QL, Liu XF, Fu NN, Huang W. Journal: Langmuir; 2010 Dec 21; 26(24):19120-8. PubMed ID: 21114280. Abstract: We reported here the synthesis and characterization of a novel water-soluble, meta-linked poly(phenylene ethynylene) (m-PPE-NEt(2)Me(+)) featuring quaternized side groups. We studied the solvent-induced self-assembly of m-PPE-NEt(2)Me(+) in MeOH/H(2)O solvent mixtures by using UV-vis absorption and fluorescence spectroscopies. The results showed that the polymer folded into a helical conformation and that the extent of helical folding increased with the volume % water in the solvent. This cationic polymer also exhibited unique pH-induced helix formation, which was attributed to the partial neutralization of quaternized side groups at high pH and the meta-links in the main chain of the polymer. Studies on the fluorescence quenching of m-PPE-NEt(2)Me(+) by anthraquinone-2,6-disulfonate (AQS) and Fe(CN)(6)(4-), two small-molecule anionic quenchers with different typical structures, revealed more efficient quenching of helical conformation by AQS than by Fe(CN)(6)(4-). We proposed that the two quenchers most likely interacted with the polymer helix in two different modes; that was, AQS featuring large planar aromatic ring could intercalate within adjacent π-stacked phenylene ethynylene units in the polymer helix, whereas Fe(CN)(6)(4-) mainly bound to the periphery of polymer helix through ion-pair formation. Finally, the results of FRET from the helical polymer to the fluorescein (C*)-labeled polyanions, ssDNA-C* (ssDNA: single-stranded DNA) and dsDNA-C* (dsDNA: double-stranded DNA) also suggested two different modes of interactions. As compared with the FRET to dsDNA-C*, the FRET to ssDNA-C* was slightly more efficient, which was believed to arise from the additional binding of ssDNA-C* with the polymer via intercalation of its exposed hydrophobic bases into the π stack of adjacent phenylene ethynylene units in the polymer helix.[Abstract] [Full Text] [Related] [New Search]